
Relative Offsets of Conditional Jumps

© Kip Irvine, 4/11/2010

Conditional jumps use a relative offset to locate their jump targets. In 32-bit mode, a 32-bit
signed relative offset is used if the jump is more than 127 bytes before or 127 bytes beyond the
current location counter. (The current location counter is the address of the instruction following
the current one because the CPU increments the instruction pointer prior to executing the current
instruction.) In the following example, label L1 is located 189 bytes (000000BDh) beyond the
location counter, so the target address field is 32 bits. The opcode is 0F 84:

Offset Encoding ASM Source Code
00000000 0F 84 000000BD jz L1

On the other hand, if the jump is to a location within the range −128 to +127 bytes from the
current location counter, a single-byte (signed) offset is encoded in the instruction operand. In
the following example, the JZ instruction at offset 0 is encoded as 74 03. The opcode is 74 and
the relative offset is 03. (NOP stands for the no-operation instruction.) The address following JZ
is 00000002, so the CPU adds 00000003 to 00000002, producing 00000005 (the offset of label
L2):

Offset Encoding ASM Source Code
00000000 74 03 jz L2
00000002 90 nop
00000003 90 nop
00000004 90 nop
00000005 L2:

Similarly, the next example shows a backward jump (negative offset). The offset after the jump
is 00000005, so 0FBh (−5) is added to 00000005, producing offset 0 (the offset of label L1):

00000000 L1:
00000000 90 nop
00000001 90 nop
00000002 90 nop
00000003 74 FB jz L1
00000005

16-Bit Mode
In 16-bit mode, the jump target must be within −128 to +127 bytes from the current location
counter. The same limitation on ranges applies to the LOOP, LOOPZ, and LOOPNZ
instructions. If a jump in a 16-bit mode program exceeds the range permitted by a signed byte
offset, MASM generates a relative jump out of range error. Assuming that instructions have an
average length of 3 bytes, you can put approximately 40 instructions inside a loop before
encountering an error. To avoid the error, jump to an unconditional jump instruction (which has
a 16-bit range).

