
Loading and Executing a Child ProcessVariable Parameter List

March 8, 2003
Occasionally, you may find it helpful to declare and call procedures having variable
parameter lists. When such functions are called, the number of arguments can vary. In the C lan-
guage, for example, the printf and scanf functions let you pass a format string, followed by any
number of variables and constants. The variables and constants are written to standard output,
using the format specifications embedded in the format string. For example, let’s ask printf to
display the values of A, B, and C in various combinations:

int A = 20;
float B = 6.542f;
char C[] = "Hello";
printf("%d %s", A, C);
printf("%s", C);
printf("%d %f %s \n", A, B, C);

In the format string, %d indicates that an integer will be printed, %f indicates that a float (real
number) will be printed, and %s indicates that a string will be printed. Clearly, if the printf func-
tion is to be useful and flexible, it must accept any number of arguments. It turns out that we can
do the same thing in assembly language.

Using VARARG

If your program uses the C, SYSCALL, or STDCALL calling convention (as does Irvine32.lib),
you can declare procedures having a variable number of parameters. All you have to do is
declare the last parameter in your procedures as type VARARG.

Following is a simple procedure named AddAll in which the first parameter will contain a
count of the number of passed arguments when the pocedure is called. The second parameter,
named vals, is a place marker for a variable number of arguments:

AddAll PROC NEAR C, argcount:DWORD, vals:VARARG
push esi

This article is written primarily for users of Assembly Language for Intel-

Based Computers, 4th Edition. You may copy and print the article, as long as

you do not alter its content.
Copyright 2002-2003 Kip R. Irvine. All rights reserved.

2

mov eax,0 ; clear the sum
mov esi,0 ; initialize index register

.WHILE argcount > 0 ; number of arguments
 add eax,vals[esi] ; vals is the first argument
 dec argcount ; point to next argument
 add esi,TYPE DWORD
.ENDW

pop esi
ret ; EAX contains the sum

AddAll ENDP

As we study the implementation of AddAll, it is clear that the procedure shoulders the
responsibility for locating the arguments on the stack, using a loop. The first parameter provides
the loop counter, and since the arguments were pushed on the stack in reverse order, the stack
looks like this when the procedure starts:

Fortunately, the last value pushed on the stack, 3, has a known location (ESP + 4). Using argu-
ment 3 as a loop counter, it’s easy to move upward through the stack and reach the other three
arguments.

A Windows API Example

There’s a useful function in the Win32 API named wsprintf that formats strings, characters, and
integers in a similar way to the C-language printf function. It’s defined in User32.LIB, the same
library featured in Section 11.2 of my book. Following is the function prototype from the MS-
Windows documentation:

int wsprintf(
 LPTSTR lpOut, // output buffer
 LPCTSTR lpFmt, // format-control string
 ... // optional arguments
);

The equivalent MASM prototype, located in the latest version of SmallWin.inc, is:

wsprintf PROTO NEAR C,

20h

15h

10h

3

(Ret Addr) ESP

3

lpOut:PTR BYTE, ; output buffer

lpFmt:PTR BYTE, ; format-control string

vars :VARARG ; optional arguments

As with many Win32 functions, there are two versions of this function. One has a letter "A" at
the end of the function name indicates that it handles ANSI characters. Another has a letter W at
the end, which handles Unicode. Typically, we provide an alternate name using TEXTEQU so
the standard name can be used in our programs:

wsprintf TEXTEQU <wsprintfA>

Let’s write some code that calls wsprintf and displays the resulting buffer on the console.
The complete program is called wsprintf.asm. (Note that you will have to add User32.lib to the
linker command line in the make32.bat file in the C:\Masm615 directory.)

.data

buffer BYTE 50 DUP(0)

fmtStr BYTE "%d, %s, 0x%X",0

intVal DWORD -1234

unsVal DWORD 12345678h

helloStr BYTE "Hello",0

.code

main PROC

; Format values as: signed integer, string,

; and unsigned hexadecimal:

INVOKE wsprintf, ADDR buffer, ADDR fmtStr,

 intVal, ADDR helloStr, unsVal

; Display the buffer:

mov edx,OFFSET buffer

call WriteString

call Crlf

The program’s output looks like this:

-1234, Hello, 0x12345678

If you would like to learn about the rich set of formatting characters recognized by wsprintf,
look up its documentation either on the Microsoft MSDN Web site, or in the Platform SDK doc-
umentation supplied with Visual C++.

