

 Assembly Language Workbook

Use the Workbook Now

Welcome to the Assembly Language Workbook, written by Kip R. Irvine to serve as a supplement to Assembly Language for Intel-
Based Computers (Prentice-Hall). By combining my book with the workbook exercises, you should have an even greater chance of
success in your Assembly Language course. Of course, there is still no substitute for having a knowledgeable, helpful instructor when
you are learning a programming language. The lessons are placed in a more-or-less logical order from easy to difficult. For example,
you should start with the following topics:

Binary and Hexadecimal Numbers
Signed Integers
Floating-Point Binary
Register and Immediate Operands
Addition and Subtraction Instructions

Many of the topics begin with a tutorial and are followed by a set of related exercises. Each exercise page is accompanied by a
corresponding page with all of the answers. Of course, you should try to do the exercises first, without looking at the answers!

In addition to the tutorials found here, you may want to look at the Supplemental Articles page on this Web site.

If you think you've found a mistake, verify it with your instructor, and if it needs correcting, post a message to the book's discussion
group.

Download the workbook as an Adobe Acrobat (PDF) file (1/15/2003)

http://kipirvine.com/asm/articles/index.htm
http://kipirvine.com/asm/workbook/asmWorkbook.pdf

 Workbook Topics

 Copyright 2000-2008 Kip R. Irvine. All rights reserved. No part of this web site may be
reproduced, in any form or by any means, without permission in writing from the author.

1. Binary and Hexadecimal Integers
2. Signed Integers (tutorial)
3. Signed Integers
4. Floating-Point Binary
5. Register and Immediate Operands
6. Addition and Subtraction Instructions
7. Direct Memory Operands
8. Indirect and Indexed Operands
9. Mapping Variables to Memory

10. MS-DOS Function Calls, Part 1
11. MS-DOS Function Calls, Part 2
12. Error-Correcting Codes
13. Boolean and Comparison Instructions
14. Decoding a 12-bit FAT (tutorial)

1.

Binary and Hexadecimal Integers
Click here to view the answers.

1. Write each of the following decimal numbers in binary:

 a. 2 g. 15
b. 7 h. 16
c. 5 i. 20
d. 8 j. 27
e. 9 k. 32
f. 12 l. 64

2. Write each of the following binary numbers in decimal:

 a. 00000101 g.00110000
b. 00001111 h.00100111
c. 00010000 i.01000000
d. 00010110 j.01100011
e. 00001011 k.10100000
f. 00011100 l.10101010

3. Write each of the following binary numbers in hexadecimal:

 a. 00000101 g.00110000
b. 00001111 h.00100111
c. 00010000 i.01001000
d. 00010110 j.01100011
e. 00001011 k.10100000
f. 00011100 l.10101011

4. Write each of the following hexadecimal numbers in binary:

 a. 0005h g. 0030h
b. 000Fh h. 0027h
c. 0010h i. 0048h
d. 0016h j. 0063h
e. 000Bh k. A064h
f. 001Ch l. ABDEh

5. Write each of the following hexadecimal numbers in decimal:

 a. 00D5h g. 0B30h
b. 002Fh h. 06DFh
c. 0110h i. 1AB6h
d. 0216h j. 0A63h
e. 004Bh k. 02A0h
f. 041Ch l. 1FABh

Tutorial: Signed Integers
In mathematics, the additive inverse of a number n is the value, when added to n, produces zero. Here are a few examples, expressed in decimal:

6 + –6 = 0

0 + 0 = 0

–1 + 1 = 0

Programs often include both subtraction and addition operations, but internally, the CPU really only performs addition. To get around this restriction,
the computer uses the additive inverse. When subtracting A – B, the CPU instead performs A + (–B). For example, to simulate the subtraction of 4
from 6, the CPU adds –4 to 6:

6 + –4 = 2

Binary Two’s Complement

When working with binary numbers, we use the term two’s complement to refer to a number’s additive inverse. The two’s complement of a number
n is formed by reversing n’s bits and adding 1. Here, for example, n equals the 4-bit number 0001:

N: 0001

Reverse N: 1110

Add 1: 1111

The two’s complement of n, when added to n, produces zero:

0001 + 1111 = 0000

It doesn’t matter how many bits are used by n. The two’s complement is formed using the same method:

N = 1 00000001

Reverse N: 11111110

Add 1: 11111111

N = 1 0000000000000001

Reverse N: 1111111111111110

Add 1: 1111111111111111

Here are some examples of 8-bit two’s complements:

n(decimal) n(binary) NEG(n) (decimal)

+2 00000010 11111110 –2

+16 00010000 11110000 –16

+127 01111111 10000001 –127

Signed Integers
Click here to view a tutorial that helps to clarify the representation of signed integers using two's complement notation. Click here to view the answers.

1. Write each of the following signed decimal integers in 8-bit binary notation:

If any number cannot be represented as a signed 8-bit binary number, indicate this in your answer.

 a. -2 e.+15
b. -7 f.-1
c. -128 g.-56
d. -16 h.+127

2. Write each of the following 8-bit signed binary integers in decimal:

 a. 11111111 g.00001111
b. 11110000 h.10101111
c. 10000000 i.11111100
d. 10000001 j.01010101

3. Which of the following integers are valid 16-bit signed decimal integers?

(indicate V=valid, I=invalid)

 a. +32469 d.+32785
b. +32767 e.-32785
c. -32768 f.+65535

4. Indicate the sign of each of the following 16-bit hexadecimal integers:

(indicate P=positive, N=negative)

 a. 7FB9h c.0D000h
b. 8123h d.649Fh

5. Write each of the following signed decimal integers as a 16-bit hexadecimal value:

 a. -42 e.-32768
b. -127 f.-1
c. -4096 g.-8193
d. -16 h.-256

Floating-Point Binary Representation
Updated 9/30/2002

Click here to view the answers

1. For each of the following binary floating-point numbers, supply the equivalent value as a base 10 fraction, and then as a base 10 decimal. The
first problem has been done for you:

Binary Floating-Point Base 10 Fraction Base 10 Decimal

 1.101 (sample) 1 5/8 1.625

 11.11

 1.1

 101.001

 1101.0101

 1110.00111

 10000.101011

 111.0000011

 11.000101

2. For each of the following exponent values, shown here in decimal, supply the actual binary bits that would be used for an 8-bit exponent in the
IEEE Short Real format. The first answer has been supplied for you:

Exponent (E) Binary Representation

 2 (sample) 10000001

 5

 0

 -10

 128

 -1

3. For each of the following floating-point binary numbers, supply the normalized value and the resulting exponent. The first answer has been
supplied for you:

Binary Value Normalized As Exponent

10000.11 (sample) 1.000011 4

1101.101

.00101

1.0001

10000011.0

.0000011001

4. For each of the following floating-point binary examples, supply the complete binary representation of the number in IEEE Short Real format. The
first answer has been supplied for you:

Binary Value Sign, Exponent, Mantissa

 -1.11 (sample) 1 01111111 11000000000000000000000

 +1101.101

 -.00101

 +100111.0

 +.0000001101011

Register and Immediate Operands
This topic covers the MOV instruction, applied to register and immediate operands. Click here to view the answers.

1. Indicate whether or not each of the following MOV instructions is valid:

(notate: V = valid, I = invalid)

 a. mov
ax,bx g. mov

al,dh
b. mov

dx,bl h. mov
ax,dh

c. mov
ecx,edx i. mov

ip,ax
d. mov

si,di j. mov
si,cl

e. mov
ds,ax k. mov

edx,ax
f. mov

ds,es l. mov
ax,es

2. Indicate whether or not each of the following MOV instructions is valid:

(notate: V = valid, I = invalid)

 a. mov ax,16 g. mov
123,dh

b. mov dx,7F65h h. mov
ss,ds

c. mov ecx,6F23458h i.
mov
0FABh,ax

d. mov si,-1 j. mov
si,cl

e. mov ds,1000h k. mov
edx,esi

f. mov al,100h l. mov
edx,-2

Addition and Subtraction Instructions
This topic covers the ADD, SUB, INC, and DEC instructions, applied to register and immediate operands. Click here to view the answers.

1. Indicate whether or not each of the following instructions is valid.

(notate: V = valid, I = invalid) Assume that all operations are unsigned.

 a. add ax,bx
b. add dx,bl
c. add ecx,dx
d. sub si,di
e. add

bx,90000
f. sub ds,1
g. dec ip
h. dec edx

i. add
edx,1000h

j. sub ah,126h
k. sub al,256
l. inc ax,1

2. What will be the value of the Carry flag after each of the following instruction sequences has executed?

(notate: CY = carry, NC = no carry)

a. mov

ax,0FFFFh
add ax,1

b. mov bh,2
sub bh,2

c. mov dx,0
dec dx

d. mov
al,0DFh
add
al,32h

e. mov
si,0B9F6h
sub
si,9874h

f. mov
cx,695Fh
sub
cx,A218h

3. What will be the value of the Zero flag after each of the following instruction sequences has executed?

(notate: ZR = zero, NZ = not zero)

a. mov

ax,0FFFFh
add ax,1

b. mov bh,2
sub bh,2

c. mov dx,0
dec dx

d. mov
al,0DFh
add
al,32h

e. mov

si,0B9F6h
sub
si,9874h

f. mov
cx,695Fh
add
cx,96A1h

4. What will be the value of the Sign flag after each of the following instruction sequences has executed?

(notate: PL = positive, NG = negative)

a. mov

ax,0FFFFh
sub ax,1

b. mov bh,2
sub bh,3

c. mov dx,0
dec dx

d. mov
ax,7FFEh
add
ax,22h

e. mov
si,0B9F6h
sub
si,9874h

f. mov
cx,8000h
add
cx,A69Fh

5. What will be the values of the Carry, Sign, and Zero flags after the following instructions have executed?

(notate: CY/NC, PL/NG, ZR/NZ)

mov
ax,620h
sub
ah,0F6h

6. What will be the values of the Carry, Sign, and Zero flags after the following instructions have executed?

(notate: CY/NC, PL/NG, ZR/NZ)

mov
ax,720h
sub
ax,0E6h

7. What will be the values of the Carry, Sign, and Zero flags after the following instructions have executed?

(notate: CY/NC, PL/NG, ZR/NZ)

mov
ax,0B6D4h
add
al,0B3h

8. What will be the values of the Overflow, Sign, and Zero flags after the following instructions have executed?

(notate: OV/NV, PL/NG, ZR/NZ)

mov

bl,-
127
dec
bl

9. What will be the values of the Carry, Overflow, Sign, and Zero flags after the following instructions have executed?

(notate: CY/NC, OV/NV, PL/NG, ZR/NZ)

mov
cx,-
4097
add
cx,1001h

10. What will be the values of the Carry, Overflow, Sign, and Zero flags after the following instructions have executed?

(notate: CY/NC, OV/NV, PL/NG, ZR/NZ)

mov
ah,-
56
add
ah,-
60

Direct Memory Operands
Updated 9/30/2002

This topic covers the MOV instruction, applied to direct memory operands and operands with displacements. Click here to view the answers.

Use the following data declarations for Questions 1-4. Assume that the offset of byteVal is 00000000h, and that all code runs in Protected mode.

.data
byteVal BYTE 1,2,3,4
wordVal WORD 1000h,2000h,3000h,4000h
dwordVal DWORD 12345678h,34567890h
aString BYTE "ABCDEFG",0

1. Indicate whether or not each of the following MOV instructions is valid:

(notate: V = valid, I = invalid)

 a. mov
ax,byteVal

b. mov
dx,wordVal

c. mov
ecx,dwordVal

d. mov
si,aString

e.
mov
esi,offset
aString

f. mov
al,byteVal

2. Indicate whether or not each of the following MOV instructions is valid:

(notate: V = valid, I = invalid)

 a.
mov
eax,offset
byteVal

b. mov
dx,wordVal+2

c.
mov
ecx,offset
dwordVal

d. mov
si,dwordVal

e.
mov
esi,offset
aString+2

f.
mov
al,offset
byteVal+1

3. Indicate the hexadecimal value moved to the destination operand by each of the following MOV instructions:

(If any instruction is invalid, indicate "I" as the answer.)

 a.
mov
eax,offset
byteVal

b. mov
dx,wordVal
mov

c. ecx,dwordVal

d.
mov
esi,offset
wordVal

e.
mov
esi,offset
aString

f. mov
al,aString+2

g. mov edi,offset
dwordVal

4. Indicate the hexadecimal value moved to the destination operand by each of the following MOV instructions:

(If any instruction is invalid, indicate "I" as the answer.)

 a.
mov
eax,offset
byteVal+2

b. mov
dx,wordVal+4

c. mov
ecx,dwordVal+4

d.
mov
esi,offset
wordVal+4

e.
mov
esi,offset
aString-1

Use the following data declarations for Questions 5-6. Assume that the offset of byteVal is 0000:

.data
byteVal BYTE 3 DUP(0FFh),2,"XY"
wordVal WORD 2 DUP(6),2
dwordVal DWORD 8,7,6,5
dwordValSiz WORD ($ - dwordVal)
ptrByte DWORD byteVal
ptrWord DWORD wordVal

5. Indicate the hexadecimal value moved to the destination operand by each of the following MOV instructions:

(If any instruction is invalid, indicate "I" as the answer.)

 a. mov eax,offset wordVal
b. mov dx,wordVal+4
c. mov ecx,dwordVal+4
d. mov si,dwordValSiz
e. mov al,byteVal+4

6. Indicate the hexadecimal value moved to the destination operand by each of the following MOV instructions:

(If any instruction is invalid, indicate "I" as the answer.)

 a. mov
ax,dwordVal+2

b. mov
dx,wordVal-2

c. mov
eax,ptrByte

d. mov
esi,ptrWord
mov

e. edi,offset
dwordVal+2

Indirect and Indexed Operands
This topic covers the MOV instruction, applied to indirect, based, and indexed memory operands. Click here to view the answers.

Use the following data declarations. Assume that the offset of byteVal is 0000:

.data
byteVal db 1,2,3,4
wordVal dw 1000h,2000h,3000h,4000h
dwordVal dd 12345678h,34567890h
aString db "ABCDEFG",0
pntr dw wordVal

1. Indicate whether or not each of the following instructions is valid:

(notate: V = valid, I = invalid)

 a. mov
ax,byteVal[si]

b. add
dx,[cx+wordVal]

c. mov
ecx,[edi+dwordVal]

d. xchg al,[bx]
e. mov ax,[bx+4]
f. mov [bx],[si]
g. xchg

al,byteVal[dx]

2. Indicate the hexadecimal value of the final destination operand after each of the following code fragments has executed:

(If any instruction is invalid, indicate "I" as the answer.)

a. mov si,offset

byteVal
mov al,[si+1]

b. mov di,6
mov
dx,wordVal[di]

c. mov bx,4
mov
ecx,[bx+dwordVal]

d. mov si,offset
aString
mov al,byteVal+1
mov [si],al

e. mov si,offset
aString+2
inc byte ptr
[si]

f. mov bx,pntr
add word ptr
[bx],2

g. mov di,offset
pntr
mov si,[di]
mov ax,[si+2]

3. Indicate the hexadecimal value of the final destination operand after each of the following code fragments has executed:

(If any instruction is invalid, indicate "I" as the answer.)

a. xchg

si,pntr
xchg
[si],wordVal

b. mov
ax,pntr
xchg ax,si
mov
dx,[si+4]

c. mov edi,0
mov di,pntr
add edi,8
mov
eax,[edi]

d. mov
esi,offset
aString
xchg
esi,pntr
mov
dl,[esi]

e. mov
esi,offset
aString
mov
dl,[esi+2]

Mapping Variables to Memory
When you're trying to learn how to address memory, the first challenge is to have a clear mental picture of the storage (the mapping) of variables to memory
locations.

Use the following data declarations, and assume that the offset of arrayW is 0000:

.data
arrayW WORD 1234h,5678h,9ABCh
ptr1 WORD offset arrayD
arrayB BYTE 10h,20h,30h,40h
arrayD DWORD 40302010h

Click here to view a memory mapping table (GIF). Right-click here to download the same table as an Adobe Acrobat file. Print this table, and fill in
the hexacecimal contents of every memory location with the correct 32-bit, 16-bit, and 8-bit values.

http://kipirvine.com/asm/workbook/memmap.gif

MS-DOS Function Calls - 1
Required reading: Chapter 13

1. Write a program that inputs a single character and redisplays (echoes) it back to the screen. Hint: Use INT 21h for the character input. Solution
program .

2. Write a program that inputs a string of characters (using a loop) and stores each character in an array. Using CodeView, display a memory
window containing the array. Solution program.

(Contents of memory window after the loop executes:)

000A 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D ABCDEFGHIJKLM
0017 4E 4F 50 51 52 53 54 00 4E 4E 42 30 38 NOPQRST.NNB08

3. Using the array created in the previous question, redisplay the array on the screen. Solution program.

4. Write a program that reads a series of ten lowercase letters from input (without displaying it), converts each character to uppercase, and then
displays the converted character. Solution program.

5. Write a program that displays a string using INT 21h function 9. Solution program.

MS-DOS Function Calls - 2
Required reading: Chapter 13

1. Write a program that inputs a string using DOS function 0Ah. Limit the input to ten characters. Redisplay the string backwards. Solution program
.

2. Write a program that inputs a string of up to 80 characters using DOS function 3Fh. After the input, display a count on the screen of the actual
number of characters typed by the user. Solution program.

3. Write a program that inputs the month, day, and year from the user. Use the values to set the system date with DOS function 2Bh. Hint: Use
the Readint function from the book's link library to input the integer values. (Under Windows NT/200, you must have administrator privileges to
run this program.) Solution program.

4. Write a program that uses DOS function 2Ah to get and display the system date. Use the following display format: yyyy-m-d. Solution program .

Error Correcting Codes
Even and Odd Parity
If a binary number contains an even number of 1 bits, we say that it has even parity. If the number contains an odd number of 1 bits, it has odd
parity.

When data must be transmitted from one device to another, there is always the possibility that an error might occur. Detection of a single incorrect
bit in a data word can be detected simply by adding an additional parity bit to the end of the word. If both the sender and receiver agree to use
even parity, for example, the sender can set the parity bit to either 1 or zero so as to make the total number of 1 bits in the word an even
number:

8-bit data value: 1 0 1 1 0 1 0 1
added parity bit: 1
transmitted data: 1 0 1 1 0 1 0 1 1

Or, if the data value already had an even number of 1 bits, the parity bit would be set to 0:

8-bit data value: 1 0 1 1 0 1 0 0
added parity bit: 0
transmitted data: 1 0 1 1 0 1 0 0 0

The receiver of a transmission also counts the 1 bits in the received value, and if the count is not even, an error condition is signalled and the
sender is usually instructed to re-send the data. For small, non-critical data transmissions, this method is a reasonable tradeoff between reliability
and efficiency. But it presents problems in cases where highly reliable data must be transmitted.

The primary problem with using a single parity bit is that it cannot detect the presence of more than one transmission error. If two bits are
incorrect, the parity can still be even and no error can be detected. In the next section we will look at an encoding method that can both detect
multiple errors and can correct single errors.

Hamming Code
In 1950, Richard Hamming developed an innovative way of adding bits to a number in such a way that transmission errors involving no more than
a single bit could be detected and corrected.

The number of parity bits depends on the number of data bits:

Data Bits : 4 8 16 32 64 128
Parity Bits: 3 4 5 6 7 8
Codeword : 7 12 21 38 71 136

We can say that for N data bits, (log2 N)+1 parity bits are required. In other words, for a data of size 2n bits, n+1 parity bits are embedded to
form the codeword. It's interesting to note that doubling the number of data bits results in the addition of only 1 more data bit. Of course, the
longer the codeword, the greater the chance that more than error might occur.

Placing the Parity Bits
(From this point onward we will number the bits from left to right, beginning with 1. In other words, bit 1 is the most significant bit.)

The parity bit positions are powers of 2: {1,2,4,8,16,32...}. All remaining positions hold data bits. Here is a table representing a 21-bit code word:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
P P P P P

The 16-bit data value 1000111100110101 would be stored as follows:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
P P 1 P 0 0 0 P 1 1 1 1 0 0 1 P 1 0 1 0 1

Calculating Parity
For any data bit located in position N in the code word, the bit is checked by parity bits in positions P1, P2, P3, ..., Pk if N is equal to the sum of
P1, P2, P3, ..., Pk. For example, bit 11 is checked by parity bits 1, 2 and 8 (11 = 1 + 2 + 8). Here is a table covering code words up to 21 bits

long:

Data Bit ...is checked by parity bits
3 1, 2
5 1, 4
6 2, 4
7 1,2,4
9 1,8

10 2,8

11 1,2,8
12 4,8
13 1,4,8
14 2,4,8
15 1,2,4,8
17 1,16
18 2,16
19 1,2,16
20 4,16
21 1,4,16

(table 4)
Turning this data around in a more useful way, the following table shows exactly which data bits are checked by each parity bit in a 21-bit code
word:

Parity Bit Checks the following Data Bits Hint*
1 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21 use 1, skip 1, use 1, skip 1, ...
2 2, 3, 6, 7, 10, 11, 14, 15, 18, 19 use 2, skip 2, use 2, skip 2, ...
4 4, 5, 6, 7, 12, 13, 14, 15, 20, 21 use 4, skip 4, use 4, ...
8 8, 9, 10, 11, 12, 13, 14, 15 use 8, skip 8, use 8, ...
16 16, 17, 18, 19, 20, 21 use 16, skip 16, ...

(table 5)
It is useful to view each row in this table as a bit group. As we will see later, error correcting using the Hamming encoding method is based on
the intersections between these groups, or sets, of bits.

* Some of the hints (3rd column) only make sense for larger code words.

Encoding a Data Value
Now it's time to put all of this information together and create a code word. We will use even parity for each bit group, which is an arbitrary
decision. We might just as easily have decided to use odd parity. For the first example, let's use the 8-bit data value 1 1 0 0 1 1 1 1, which will
produce a 12-bit code word. Let's start by filling in the data bits:

1 2 3 4 5 6 7 8 9 10 11 12
P P 1 P 1 0 0 P 1 1 1 1

Next, we begin calculating and inserting each of the parity bits.

P1: To calculate the parity bit in position 1, we sum the bits in positions 3, 5, 7, 9, and 11: (1+1+0+1+1 = 4). This sum is even (indicating even
parity), so parity bit 1 should be assigned a value of 0. By doing this, we allow the parity to remain even:

1 2 3 4 5 6 7 8 9 10 11 12
0 P 1 P 1 0 0 P 1 1 1 1

P2: To generate the parity bit in position 2, we sum the bits in positions 3, 6, 7, 10, and 11: (1+0+0+1+1 = 3). The sum is odd, so we assign a
value of 1 to parity bit 2. This produces even parity for the combined group of bits 2, 3, 6, 7, 10, and 11:

1 2 3 4 5 6 7 8 9 10 11 12
0 1 1 P 1 0 0 P 1 1 1 1

P4: To generate the parity bit in position 4, we sum the bits in positions 5, 6, 7, and 12: (1+0+0+1 = 2). This results in even parity, so we set
parity bit 4 to zero, leaving the parity even:

1 2 3 4 5 6 7 8 9 10 11 12
0 1 1 0 1 0 0 P 1 1 1 1

P8: To generate the parity bit in position 8, we sum the bits in positions 9, 10, 11 and 12: (1+1+1+1 = 4). This results in even parity, so we set
parity bit 8 to zero, leaving the parity even:

1 2 3 4 5 6 7 8 9 10 11 12
0 1 1 0 1 0 0 0 1 1 1 1

All parity bits have been created, and the resulting code word is: 011010001111.

Detecting a Single Error
When a code word is received, the receiver must verify the correctness of the data. This is accomplished by counting the 1 bits in each bit group
(mentioned earlier) and verifying that each has even parity. Recall that we arbitrarily decided to use even parity when creating code words. Here
are the bit groups for a 12-bit code value:

Parity Bit Bit Group
1 1, 3, 5, 7, 9, 11
2 2, 3, 6, 7, 10, 11
4 4, 5, 6, 7, 12
8 8, 9, 10, 11, 12

If one of these groups produces an odd number of bits, the receiver knows that a transmission error occurred. As long as only a single bit was
altered, it can be corrected. The method can be best shown using concrete examples.

Example 1: Suppose that the bit in position 4 was reversed, producing 011110001111. The receiver would detect an odd parity in the bit group
associated with parity bit 4. After eliminating all bits from this group that also appear in other groups, the only remaining bit is bit 4. The receiver
would toggle this bit, thus correcting the transmission error.

Example 2: Suppose that bit 7 was reversed, producing 011010101111. The bit groups based on parity bits 1, 2, and 4 would have odd parity. The
only bit that is shared by all three groups (the intersection of the three sets of bits) is bit 7, so again the error bit is identified:

Parity Bit Bit Group
1 1, 3, 5, 7, 9, 11
2 2, 3, 6, 7, 10, 11
4 4, 5, 6, 7, 12
8 8, 9, 10, 11, 12

Example 3: Suppose that bit 6 was reversed, producing 011011001111. The groups based on parity bits 2 and 4 would have odd parity. Notice
that two bits are shared by these two groups (their intersection): 6 and 7:

Parity Bit Bit Group
1 1, 3, 5, 7, 9, 11
2 2, 3, 6, 7, 10, 11
4 4, 5, 6, 7, 12
8 8, 9, 10, 11, 12

But then, but 7 occurs in group 1, which has even parity. This leaves bit 6 as the only choice as the incorrect bit.

Multiple Errors
If two errors were to occur, we could detect the presence of an error, but it would not be possible to correct the error. Consider, for example, that
both bits 5 and 7 were incorrect. The bit groups based on parity bit 2 would have odd parity. Groups 1 and 4, on the other hand, would have even
parity because bits 5 and 7 would counteract each other:

Parity Bit Bit Group
1 1, 3, 5, 7
2 2, 3, 6, 7
4 4, 5, 6, 7

This would incorrectly lead us to the conclusion that bit 2 is the culprit, as it is the only bit that does not occur in groups 1 and 4. But toggling bit
2 would not to fix the error--it would simply make it worse.

For an excellent introductory discussion of error-correcting codes, see Tanenbaum, Andrew. Structured Computer Organization, Fourth Edition
(1999), pp. 61-64.

If you would like to learn how to construct your own error-correcting codes, here is a good explanation of the mathematics: Laufer, Henry B.
Discrete Mathematics and Applied Modern Algebra. Chapter 1: Group Codes. Prindle, Weber & Scmidt, 1984.

Boolean and Comparison Instructions
Click here to view the Answers

AND and OR Instructions
1. Write instructions that jump to a label named Target if bits 0, 1, and 2 in the AL register are all set (the remaining bits are unimportant).

2. Write instructions that will jump to a label named Target if either bit 0, 1, or 2 is set in the AL register (the remaining bits are unimportant).

3. Clear bits 4-6 in the BL register without affecting any other bits.

4. Set bits 3-4 in the CL register without affecting any other bits.

Decoding a 12-bit File Allocation Table

In this section we present a simple program that loads the file allocation table and root directory from a diskette (in drive A), and displays the list
of clusters owned by each file. Let's look at part of a sample 12-bit FAT in raw form (shown by Debug) so we can decode its structure:

 F0 FF FF FF 4F 00 05 60-00 07 80 00 09 A0 00 0B
 C0 00 0D E0 00 0F 00 01-11 20 01 13 40 01 15 60

A decoded form of entries 2 through 9 is shown here:
Entry: 2 3 4 5 6 7 8 9 ...
Value: <FFF> <004> <005> <006> <007> <008> <009> <00A> ...

You can can track down all clusters allocated to a particular file by following what is called a cluster chain. Let's follow the cluster chain starting
with cluster 3. Here is how we find its matching entry in the FAT, using three steps:

1. Divide the cluster number by 2, resulting in an integer quotient. Add the same cluster number to this quotient, producing the offset of the
cluster's entry in the FAT. Using cluster 3 as a sample, this results in Int(3 /2) + 3 = 4, so we look at offset 4 in the FAT.

2. The 16-bit word at offset 4 contains 004Fh (0000 0000 0100 1111). We need to examine this entry to determine the next cluster number
allocated to the file.

3. If the current cluster number is even, keep the lowest 12 bits of the 16-bit word. If the current cluster number is odd, keep the highest 12
bits of the 16-bit word. For example, our cluster number (3) is odd, so we keep the highest 12 bits (0000 0000 0100), and this indicates
that cluster 4 is the next cluster.

We return to step 1 and calculate the offset of cluster 4 in the FAT table: The current cluster number is 4, so we calculate Int(4 /2) + 4 = 6. The
word at offset 6 is 6005h (0110 0000 0000 0101). The value 6 is even, so we take the lowest 12 bits of 6005h, producing a new cluster number of
5. Therefore, FAT entry 4 contains the number 5.

Fortunately, a 16-bit FAT is easier to decode, because entries do not cross byte boundaries. In a 16-bit FAT, cluster
n is represented by the entry at offset n * 2 in the table.

Finding the Starting Sector

Given a cluster number, we need to know how to calculate its starting sector number:

1. Subtract 2 from the cluster number and multiply the result by the disk's sectors per cluster. A 1.44MB disk has one sector per cluster, so
we multiply by 1.

2. Add the starting sector number of the data area. On a 1.44MB disk, this is sector 33. For example, cluster number 3 is located at sector 34:
((3 - 2) * 1) + 33 = 34

Cluster Display Program

In this section, we will demonstrate a program that reads a 1.44MB diskette in drive A, loads its file allocation table and root directory into a
buffer, and displays each filename along with a list of all clusters allocated to the file. The following is a sample of the program’s output:

The main procedure displays a greeting, loads the directory and FAT into memory, and loops through each directory entry. The most important task
here is to check the first character of each directory entry to see if it refers to a filename. If it does, we check the file's attribute byte at offset 0Bh

to make sure the entry is not a volume label or directory name. We screen out directory entries with attributes of 00h, E5h, 2Eh, and 18h.

Regarding the attribute byte: Bit 3 is set if the entry is a volume name, and bit 4 is set if it is a directory name. The TEST instruction used here
sets the Zero flag only if both bits are clear.

LoadFATandDir loads the disk directory into dirbuf, and it loads the FAT into fattable. DisplayClusters contains a loop that displays all cluster
numbers allocated to a single file. The disk directory has already been read into dirbuf, and we assume that SI points to the current directory
entry.

The Next_FAT_Entry procedure uses the current cluster number (passed in AX) to calculate the next cluster number, which it returns in AX. The
SHR instruction in this procedure checks to see if the cluster number is even by shifting its lowest bit into the Carry flag. If it is, we retain the low
12 bits of DX; otherwise, we keep the high 12 bits. The new cluster number is returned in AX.

Here is the complete program listing:

TITLE Cluster Display Program (Cluster.asm)

; This program reads the directory of drive A, decodes
; the file allocation table, and displays the list of
; clusters allocated to each file.

INCLUDE Irvine16.inc

; Attributes specific to 1.44MB diskettes:
 FATSectors = 9 ; num sectors, first copy of FAT
 DIRSectors = 14 ; num sectors, root directory
 DIR_START = 19 ; starting directory sector num

SECTOR_SIZE = 512
 DRIVE_A = 0
 FAT_START = 1 ; starting sector of FAT
 EOLN equ <0dh,0ah>

Directory STRUCT
 fileName BYTE 8 dup(?)
 extension BYTE 3 dup(?)
 attribute BYTE ?
 reserved BYTE 10 dup(?)
 time WORD ?
 date WORD ?
 startingCluster WORD ?
 fileSize DWORD ?
 Directory ENDS
 ENTRIES_PER_SECTOR = SECTOR_SIZE / (size Directory)

.data
 heading LABEL byte
 BYTE 'Cluster Display Program (CLUSTER.EXE)'
 BYTE EOLN,EOLN,'The following clusters are allocated '
 BYTE 'to each file:',EOLN,EOLN,0

fattable WORD ((FATSectors * SECTOR_SIZE) / 2) DUP(?)
 dirbuf Directory (DIRSectors * ENTRIES_PER_SECTOR) DUP(<>)
 driveNumber BYTE ?

.code
 main PROC
 call Initialize
 mov ax,OFFSET dirbuf
 mov ax,OFFSET driveNumber
 call LoadFATandDir
 jc A3 ; quit if we failed
 mov si,OFFSET dirbuf ; index into the directory

A1: cmp (Directory PTR [si]).filename,0 ; entry never used?
 je A3 ; yes: must be the end
 cmp (Directory PTR [si]).filename,0E5h ; entry deleted?
 je A2 ; yes: skip to next entry
 cmp (Directory PTR [si]).filename,2Eh ; parent directory?
 je A2 ; yes: skip to next entry

 cmp (Directory PTR [si]).attribute,0Fh ; extended filename?
 je A2
 test (Directory PTR [si]).attribute,18h ; vol or directory name?
 jnz A2 ; yes: skip to next entry
 call displayClusters ; must be a valid entry

A2: add si,32 ; point to next entry
 jmp A1
 A3: exit
main ENDP

;--
LoadFATandDir PROC
; Load FAT and root directory sectors.
; Receives: nothing
; Returns: nothing
;--
 pusha
 ; Load the FAT
 mov al,DRIVE_A
 mov cx,FATsectors
 mov dx,FAT_START
 mov bx,OFFSET fattable
 int 25h ; read sectors
 add sp,2 ; pop old flags off stack
 ; Load the Directory
 mov cx,DIRsectors
 mov dx,DIR_START
 mov bx,OFFSET dirbuf
 int 25h
 add sp,2
 popa
 ret
LoadFATandDir ENDP

;--
DisplayClusters PROC
; Display all clusters allocated to a single file.
; Receives: SI contains the offset of the directory entry.
;--
 push ax
 call displayFilename ; display the filename
 mov ax,[si+1Ah] ; get first cluster
 C1: cmp ax,0FFFh ; last cluster?
 je C2 ; yes: quit
 mov bx,10 ; choose decimal radix
 call WriteDec ; display the number
 call writeSpace ; display a space
 call next_FAT_entry ; returns cluster # in AX
 jmp C1 ; find next cluster
 C2: call Crlf
 pop ax
 ret
DisplayClusters ENDP

;--
WriteSpace PROC
; Write a single space to standard output.
;--
 push ax
 mov ah,2 ; function: display character
 mov dl,20h ; 20h = space
 int 21h
 pop ax
 ret
WriteSpace ENDP

;--
Next_FAT_entry PROC
; Find the next cluster in the FAT.
; Receives: AX = current cluster number
; Returns: AX = new cluster number
;--
 push bx ; save regs

 push cx
 mov bx,ax ; copy the number
 shr bx,1 ; divide by 2
 add bx,ax ; new cluster OFFSET
 mov dx,fattable[bx] ; DX = new cluster value
 shr ax,1 ; old cluster even?
 jc E1 ; no: keep high 12 bits
 and dx,0FFFh ; yes: keep low 12 bits
 jmp E2
 E1: shr dx,4 ; shift 4 bits to the right
 E2: mov ax,dx ; return new cluster number
 pop cx ; restore regs
 pop bx
 ret
Next_FAT_entry ENDP

;--
DisplayFilename PROC
; Display the file name.
;--
 mov byte ptr [si+11],0 ; SI points to filename
 mov dx,si
 call Writestring
 mov ah,2 ; display a space
 mov dl,20h
 int 21h
 ret
DisplayFilename ENDP

;--
Initialize PROC
; Set upt DS, clear screen, display a heading.
;--
 mov ax,@data
 mov ds,ax
 call ClrScr
 mov dx,OFFSET heading ; display program heading
 call Writestring
 ret
Initialize ENDP
END main

Answers: Binary and Hexadecimal Numbers

1. Write each of the following decimal numbers in binary.

Hint: To convert a binary number to its decimal equivalent, evaluate each digit position as a power of 2. The
decimal value of 20 is 1, 21 is 2, 22 is 4, and so on. For example, the binary number 1111 is equal to 15 decimal.

a. 2 = 00000010 g. 15 =
00001111

b. 7 = 00000111 h. 16 =
00010000

c. 5 = 00000101 i. 20 =
00010100

d. 8 = 00001000 j. 27 =
00011011

e. 9 = 00001001 k. 32 =
00100000

f. 12 = 00001100 l. 64 =
01000000

2. Write each of the following binary numbers in decimal:

Hint: To calculate the decimal value of a binary number, add the value of each bit position containing a 1 to the
number’s total value. For example, the binary number 0 0 0 0 1 0 0 1 may be interpreted in decimal as (1 * 23)
+ (1 * 20).

 a. 00000101 =
5 g.00110000

 =
48

b. 00001111 =
15 h.00100111 = 39

c. 00010000 =
16i.01000000

 =
64

d. 00010110 =
22 j.01100011

 =
99

e. 00001011 =
11 k.10100000

 =
160

f. 00011100 =
28 l.10101010

 =
170

3. Write each of the following binary numbers in hexadecimal:

Hint: To calculate the hexadecimal value of a binary number, translate each group of four bits to its equivalent
hexadecimal digit. For example, 1100 = C, and 1011 = B.

 a. 00000101 =
05h g.00110000

 =
30h

b. 00001111 =
0Fh h.00100111

 =
27h

c. 00010000 =
10hi.01001000

 =
48h

d. 00010110 =
16h j.01100011

 =
63h

e. 00001011 =
0Bh k.10100000

 =
A0h

f. 00011100 =
1Ch l.10101011

 =
ABh

4. Write each of the following hexadecimal numbers in binary:

Hint: To calculate the binary value of a hexadecimal number, translate each hexadecimal digit into its
corresponding four-bit binary pattern. (You can also translate the digit to decimal, and then convert it to its
equivalent binary bit pattern.) For example, hex C= 1100, and hex B = 1011.

 a. 0005h =
00000101 g.0030h = 00110000

b. 000Fh =
00001111 h.0027h = 00100111

c. 0010h =
00010000 i.0048h = 01001000

d. 0016h =
00010110 j.0063h = 01100011

e. 000Bh =
00001011 k.

A064h =
10100000
01100100

f. 001Ch =
00011100 l.

ABDEh =
10101011
11011110

5. Write each of the following hexadecimal numbers in decimal:

Hint: To calculate the decimal value of a hexadecimal number, multiply each hexadecimal digit by its
corresponding power of 16. The sum of these products is the decimal value of the number. For example,
hexadecimal 12A = (1 * 256) + (2 * 16) + (10 * 1) = 298. Hint: 160 = 1, 161 = 16, 162 = 256, and 163 = 4096. Also, you can use the
following Hexadecimal digit table as an aid:

Extended Hexadecimal Digits

A = 10 B = 11

C = 12 D = 13

E = 14 F = 15

Answers:

 a. 00D5h =
213 g.

0B30h
=
2864

b. 002Fh =
47 h.

06DFh
=
1759

c. 0110h =
272 i.

1AB6h
=
6838

d. 0216h =
534 j.

0A63h
=
2659

e. 004Bh =
75 k. 02A0h

= 672

f. 041Ch =
1052 l.

1FABh
=
8107

Answers: Signed Integers
1. Write each of the following signed decimal integers in 8-bit binary notation:

Hint: Remove the sign, create the binary representation of the number, and then convert it to its two's
complement.

 a. -2 =
11111110 e.+15 = 00001111

b. -7 =
11111001 f.-1 = 11111111

c. -128 =
10000000 g.-56 = 11001000

d. -16 =
11110000 h.+127 = 01111111

2. Write each of the following 8-bit signed binary integers in decimal:

Hint: If the highest bit is set, convert the number to its two's complement, create the decimal representation of
the number, and then prepend a negative sign to the answer.

 a. 11111111
= -1 g.00001111 = +15

b. 11110000
= -16 h.10101111 = -81

c. 10000000
= -128 i.11111100 = -4

d. 10000001
= -127 j.01010101 = +85

3. Which of the following integers are valid 16-bit signed decimal integers?

 a. +32469 =
V d.+32785 = I

b. +32767 =
V e.

-
32785
= I

c. -32768 =
V f.+65535 = I

4. Indicate the sign of each of the following 16-bit hexadecimal integers:

 a. 7FB9h =
P c.0D000h = N

b. 8123h =
N d.649Fh = P

5. Write each of the following signed decimal integers as a 16-bit hexadecimal value:

 a. -42 =
FFD6h e.

-
32768
=
8000h

b. -127 =
FF81h f.-1 = FFFFh

c. -4096 =
F000h g.

-8193
=
DFFFh

d. -16 =
FFF0h h.

-256
=
FF00h

Answers: Floating-Point Binary
Updated 9/30/2002

There is no section of the book covering this topic, so click here to view a tutorial.

1. For each of the following binary floating-point numbers, supply the equivalent value as a base 10 fraction, and then as a base 10 decimal. The first problem has
been done for you:

Binary Floating-Point Base 10 Fraction Base 10 Decimal

 1.101 1 5/8 1.625

 11.11 3 3/4 3.75

 1.1 1 1/2 1.5

 101.001 5 1/8 5.125

 1101.0101 13 5/16 13.3125

 1110.00111 14 7/32 14.21875

 10000.101011 16 43/64 16.671875

 111.0000011 7 3/128 7.0234375

 11.000101 3 5/64 3.078125

2. For each of the following exponent values, shown here in decimal, supply the actual binary bits that would be used for an 8-bit exponent in the IEEE Short Real
format. The first answer has been supplied for you:

Exponent (E) Binary Representation

2 10000001

5 10000100

0 01111111

-10 01110101

128 11111111

-1 01111110

3. For each of the following floating-point binary numbers, supply the normalized value and the resulting exponent. The first answer has been supplied for you:

Binary Value Normalized As Exponent

10000.11 1.000011 4

1101.101 1.101101 3

.00101 1.01 -3

1.0001 1.0001 0

10000011.0 1.0000011 7

.0000011001 1.1001 -6

4. For each of the following floating-point binary examples, supply the complete binary representation of the number in IEEE Short Real format. The first answer has
been supplied for you:

Binary Value Sign, Exponent, Mantissa

 -1.11 1 01111111 11000000000000000000000

 +1101.101 0 10000010 10110100000000000000000

 -.00101 1 01111100 01000000000000000000000

 +100111.0 0 10000100 00111000000000000000000

 +.0000001101011 0 01111000 10101100000000000000000

http://kipirvine.com/asm/workbook/floating_tut.htm

Answers: Register and Immediate Operands
1. Indicate whether or not each of the following MOV instructions is valid:

(notate: V = valid, I = invalid)

 a.mov ax,bx V g. mov al,dh V
b.mov dx,bl I h. mov ax,dh I
c.mov ecx,edx V i. mov ip,ax I
d.mov si,di V j. mov si,cl I
e.mov ds,ax V k. mov edx,ax I
f.mov ds,es I l. mov ax,es V

2. Indicate whether or not each of the following MOV instructions is valid:

(notate: V = valid, I = invalid)

 a.mov ax,16 V g.mov 123,dh I
b.mov dx,7F65h V h.mov ss,ds I
c.mov ecx,6F23458h V i.mov 0FABh,ax I
d.mov si,-1 V j.mov si,cl I
e.mov ds,1000h I k.mov edx,esi V
f.mov al,100h I l.mov edx,-2 V

Answers: Addition and Subtraction Instructions
1. Indicate whether or not each of the following instructions is valid.

 a.add ax,bx V

b.add dx,bl I
operand
size
mismatch

c.add ecx,dx I

d.sub si,di V

e.add bx,90000 I source too large

f.sub ds,1 I
cannot use
segment
reg

g. dec ip Icannot modify IP
h. dec edx V
i. add edx,1000hV

j. sub ah,126hIsource too large
k. sub al,256 Isource too large
l. inc ax,1 Iextraneous operand

2. What will be the value of the Carry flag after each of the following instruction sequences has executed?

(notate: CY = carry, NC = no carry)

a. mov

ax,0FFFFh
add ax,1

 CY

b. mov bh,2
sub bh,2 NC

c. mov dx,0
dec dx

??
(Carry
not
affected
by INC
and
DEC)

d. mov
al,0DFh
add
al,32h

CY

e. mov
si,0B9F6h
sub
si,9874h

NC

f. mov
cx,695Fh
sub
cx,A218h

CY

3. What will be the value of the Zero flag after each of the following instruction sequences has executed?

(notate: ZR = zero, NZ = not zero)

a. mov

ax,0FFFFh
add ax,1

 ZR

b. mov bh,2
sub bh,2 ZR

c. mov dx,0
dec dx NZ

d. mov
al,0DFh
add
al,32h

NZ

e. mov
si,0B9F6h
sub
si,9874h

NZ

f. mov
cx,695Fh
add
cx,96A1h

ZR

4. What will be the value of the Sign flag after each of the following instruction sequences has executed?

(notate: PL = positive, NG = negative)

a. mov

ax,0FFFFh
sub ax,1

 PL

b. mov bh,2
sub bh,3 NG

c. mov dx,0
dec dx NG

d. mov
ax,7FFEh
add
ax,22h

NG

e. mov
si,0B9F6h
sub
si,9874h

PL

f. mov
cx,8000h
add
cx,A69Fh

PL

5. What will be the values of the Carry, Sign, and Zero flags after the following instructions have executed?

(notate: CY/NC, PL/NG, ZR/NZ)

mov
ax,620h
sub
ah,0F6h

CY,PL,NZ

6. What will be the values of the Carry, Sign, and Zero flags after the following instructions have executed?

(notate: CY/NC, PL/NG, ZR/NZ)

mov
ax,720h
sub
ax,0E6h

NC,PL,NZ

7. What will be the values of the Carry, Sign, and Zero flags after the following instructions have executed?

(notate: CY/NC, PL/NG, ZR/NZ)

mov
ax,0B6D4h
add
al,0B3h

CY,NG,NZ

8. What will be the values of the Overflow, Sign, and Zero flags after the following instructions have executed?

(notate: OV/NV, PL/NG, ZR/NZ)

mov
bl,-
127
dec
bl

NV,NG,NZ

9. What will be the values of the Carry, Overflow, Sign, and Zero flags after the following instructions have executed?

(notate: CY/NC, OV/NV, PL/NG, ZR/NZ)

mov
cx,-
4097
add
cx,1001h

CY,NV,PL,ZR

10. What will be the values of the Carry, Overflow, Sign, and Zero flags after the following instructions have executed?

(notate: CY/NC, OV/NV, PL/NG, ZR/NZ)

mov
ah,-
56
add
ah,-
60

CY,NV,NG,NZ

Answers: Direct Memory Operands
Updated 9/30/2002

Use the following data declarations for Questions 1-4. Assume that the offset of byteVal is 00000000h, and that all code runs in Protected mode.

.data
byteVal BYTE 1,2,3,4
wordVal WORD 1000h,2000h,3000h,4000h
dwordVal DWORD 12345678h,34567890h
aString BYTE "ABCDEFG",0

1. Indicate whether or not each of the following MOV instructions is valid:

(notate: V = valid, I = invalid)

 a. mov
ax,byteVal I

b. mov
dx,wordVal V

c. mov
ecx,dwordVal V

d. mov
si,aString I

e.
mov
esi,offset
aString

 V

f. mov
al,byteVal V

2. Indicate whether or not each of the following MOV instructions is valid:

(notate: V = valid, I = invalid)

 a.
mov
eax,offset
byteVal

 V

b. mov
dx,wordVal+2 V

c.
mov
ecx,offset
dwordVal

 V

d. mov
si,dwordVal I

e.
mov
esi,offset
aString+2

 V

f.
mov
al,offset
byteVal+1

 I

3. Indicate the hexadecimal value moved to the destination operand by each of the following MOV instructions:

(If any instruction is invalid, indicate "I" as the answer.)

 a.
mov
ax,offset
byteVal

00000000h

b. mov
dx,wordVal 1000h

c. mov
ecx,dwordVal

12345678h

mov

d. esi,offset
wordVal

 00000004h

e.
mov
esi,offset
aString

00000014h

f. mov
al,aString+2

 43h
('C')

g. mov edi,offset
dwordVal

0000000Ch

4. Indicate the hexadecimal value moved to the destination operand by each of the following MOV instructions:

(If any instruction is invalid, indicate "I" as the answer.)

 a.
mov
eax,offset
byteVal+2

 00000002h

b. mov
dx,wordVal+4 3000h

c. mov
ecx,dwordVal+4

34567890h

d.
mov
esi,offset
wordVal+4

 00000008h

e.
mov
esi,offset
aString-1

 00000013h

Use the following data declarations for Questions 5-6. Assume that the offset of byteVal is 0000:

.data
byteVal BYTE 3 DUP(0FFh),2,"XY"
wordVal WORD 2 DUP(6),2
dwordVal DWORD 8,7,6,5
dwordValSiz WORD ($ - dwordVal)
ptrByte DWORD byteVal
ptrWord DWORD wordVal

5. Indicate the hexadecimal value moved to the destination operand by each of the following MOV instructions:

(If any instruction is invalid, indicate "I" as the answer.)

 a.
mov
eax,offset
wordVal

 00000006h

b. mov
dx,wordVal+4 0002h

c. mov
ecx,dwordVal+4 00000007h

d. mov
si,dwordValSiz 0010h

e. mov
al,byteVal+4 58h('X')

6. Indicate the hexadecimal value moved to the destination operand by each of the following MOV instructions:

(If any instruction is invalid, indicate "I" as the answer.)

 a.mov ax,dwordVal+2 I

b.mov dx,wordVal-2 5958h ("YX") *

c.mov 00000000h

eax,ptrByte
d.mov esi,ptrWord 00000006h

e.
mov
edi,offset
dwordVal+2

 0000000Eh

* The two character bytes are automatically reversed when loaded into a 16-bit register.

Answers: Indirect and Indexed Operands
Use the following data declarations. Assume that the offset of byteVal is 0000:

.data
byteVal db 1,2,3,4
wordVal dw 1000h,2000h,3000h,4000h
dwordVal dd 12345678h,34567890h
aString db "ABCDEFG",0
pntr dw wordVal

1. Indicate whether or not each of the following instructions is valid:

(notate: V = valid, I = invalid)

a.mov

ax,byteVal[si]
I (operand
size
mismatch)

b.add
dx,[cx+wordVal]

I (CX is
not a
base
or index
register)

c.mov
ecx,[edi+dwordVal] V

d.xchg al,[bx] V
e.mov ax,[bx+4] V
f.mov [bx],[si]

I (memory
to memory
 not
permitted)

g. xchg
al,byteVal[dx]

I (DX is
not a
base
or index
register)

2. Indicate the hexadecimal value of the final destination operand after each of the following code fragments has executed:

(If any instruction is invalid, indicate "I" as the answer.)

a.mov si,offset

byteVal
mov al,[si+1]

2

b.mov di,6
mov
dx,wordVal[di]

4000h

c.mov bx,4
mov
ecx,[bx+dwordVal]

34567890h

d.mov si,offset
aString
mov al,byteVal+1
mov [si],al

2

e.mov si,offset
aString+2
inc byte ptr
[si]

44h('D')

f.mov bx,pntr
add word ptr
[bx],2

1002h

g. mov di,offset
pntr
mov si,[di]
mov ax,[si+2] 2000h

3. Indicate the hexadecimal value of the final destination operand after each of the following code fragments has executed:

(If any instruction is invalid, indicate "I" as the answer.)

a. xchg

si,pntr
xchg
[si],wordVal

I (memory
to memory
not
permitted)

b. mov
ax,pntr
xchg ax,si
mov
dx,[si+4]

dx =
3000h

c. mov edi,0
mov di,pntr
add edi,8
mov
eax,[edi]

12345678h
d. mov

esi,offset
aString
xchg
esi,pntr
mov
dl,[esi]

I (esi
and pntr
have
different
sizes)

e. mov
esi,offset
aString
mov
dl,[esi+2]

43h ('C')

0000

word bytedoubleword

M E M O R Y M A P

0006

0001

0002

0004

0005

0007

0008

0009

0003

000A

000B

000C

000D

000E

000F

0010

0011

0012

0013

0014

0015

0016

0017

Write the names of variables next to their
corresponding memory locat ions

Title MS-DOS Example (DOS1-1.ASM)

;Problem statement:
;Write a program that inputs a single character and redisplays
;(echoes) it back to the screen. Hint: Use INT 21h for the
;character input.

INCLUDE Irvine16.inc

.code
main proc
 mov ax,@data
 mov ds,ax

 mov ah,1 ; input character with echo
 int 21h ; AL = character
 mov ah,2 ; character output
 mov dl,al
 int 21h

 exit
main endp

end main

Title MS-DOS Example (DOS1-2.ASM)

; Problem statement:
;Write a program that inputs a string of characters
;(using a loop) and stores each character in an array.
;Display a memory dump in CodeView showing the array.

INCLUDE Irvine16.inc

.data
COUNT = 20
charArray db COUNT dup(0),0

.code
main proc
 mov ax,@data
 mov ds,ax

 mov si,offset charArray
 mov cx,COUNT

L1: mov ah,1 ; input character with echo
 int 21h ; AL = character
 mov [si],al ; save in array
 inc si ; next array position
 Loop L1 ; repeat loop

 exit
main endp
end main

Title MS-DOS Example (DOS1-3.ASM)

; Problem statement:
;Write a program that inputs a string of characters
;(using a loop) and stores each character in an array.
;Redisplay the array at the end of the program.

INCLUDE Irvine16.inc

.data
COUNT = 20
charArray db COUNT dup(0),0

.code
main proc
 mov ax,@data
 mov ds,ax

 mov si,offset charArray
 mov cx,COUNT

L1: mov ah,1 ; input character with echo
 int 21h ; AL = character
 mov [si],al ; save in array
 inc si ; next array position
 Loop L1 ; repeat loop

; Redisplay the array on the screen

 call Crlf ; start new line
 mov si,offset charArray
 mov cx,COUNT

L2: mov ah,2 ; character output
 mov dl,[si] ; get char from array
 int 21h ; display the character
 inc si
 Loop L2

 call Crlf

 exit
main endp
end main

Title MS-DOS Example (DOS1-4.ASM)

;Problem statement:
;Write a program that reads a series of ten lowercase
;letters from input (without displaying it), converts
;each character to uppercase, and then displays the
;converted character.

INCLUDE Irvine16.inc

COUNT = 10

.code
main proc
 mov ax,@data
 mov ds,ax

 mov cx,COUNT ; loop counter

L1: mov ah,7 ; input character, no echo
 int 21h ; AL = character
 sub al,20h ; convert to upper case
 mov ah,2 ; character output function
 mov dl,al ; character must be in DL
 int 21h ; display the character
 Loop L1 ; repeat loop

 exit
main endp

end main

Title MS-DOS Example 1 (DOS1-5.ASM)

;Problem statement:
;Write a program that displays a string using
;INT 21h function 9.

INCLUDE Irvine16.inc

.data
message db "Displaying a string",0dh,0ah,"$"

.code
main proc
 mov ax,@data
 mov ds,ax

 mov ah,9 ; DOS function #9
 mov dx,offset message ; offset of the string
 int 21h ; display it

 exit
main endp

end main

title MS-DOS Function Calls - 2 (DOS2-1.ASM)

;Problem statement:
;Write a program that inputs a string using DOS
;function 0Ah. Limit the input to ten characters.
;Redisplay the string backwards

INCLUDE Irvine16.inc

.data
COUNT = 11
keyboardArea label byte
maxkeys db COUNT
charsInput db ?
buffer db COUNT dup(0)

.code
main proc
 mov ax,@data
 mov ds,ax

 mov ah,0Ah ; buffered keyboard input
 mov dx,offset keyboardArea
 int 21h
 call Crlf

; Redisplay the string backwards, using SI
; as an index into the string

 mov ah,0
 mov al,charsInput ; get character count
 mov cx,ax ; put in loop counter
 mov si,ax ; point past end of string
 dec si ; back up one position

L1: mov dl,buffer[si] ; get char from buffer
 mov ah,2 ; MS-DOS char output function
 int 21h
 dec si ; back up in buffer
 Loop L1 ; loop through the string

 call Crlf

 exit
main endp

end main

title MS-DOS Function Calls - 2 (DOS2-2.ASM)

;Problem statement:
;Write a program that inputs a string of up to 80
;characters using DOS function 3Fh. After the input,
;display a count on the screen of the actual number
;of characters typed by the user.

INCLUDE Irvine16.inc

.data
COUNT = 80

; create the input buffer, and allow
; for two extra characters (CR/LF)

buffer db (COUNT+2) dup(0)

.code
main proc
 mov ax,@data
 mov ds,ax

 mov ah,3Fh ; input from file or device
 mov bx,0 ; keyboard device handle
 mov cx,COUNT ; max input count
 mov dx,offset buffer
 int 21h ; call DOS to read the input

 ; Display the character count in AX that was
 ; returned by INT 21h function 3Fh
 ; (minus 2 for the CR/LF characters)

 sub ax,2
 call Writedec ; display AX
 call Crlf

 exit
main endp

end main

title MS-DOS Function Calls - 2 (DOS2-3.ASM)

;Problem statement:
;Write a program that inputs the month, day, and
;year from the user. Use the values to set the system
;date with DOS function 2Bh.

INCLUDE Irvine16.inc

.data
monthPrompt db "Enter the month: ",0
dayPrompt db "Enter the day: ",0
yearPrompt db "Enter the year: ",0
blankLine db 30 dup(" "),0dh,0
month db ?
day db ?
year dw ?

.code
main proc
 mov ax,@data
 mov ds,ax

 mov dx,offset monthPrompt
 call Writestring
 call Readint
 mov month,al
 mov dx,offset blankLine
 call Writestring

 mov dx,offset dayPrompt
 call Writestring
 call Readint
 mov day,al
 mov dx,offset blankLine
 call Writestring

 mov dx,offset yearPrompt
 call Writestring
 call Readint
 mov year,ax

 mov ah,2Bh ; MS-DOS Set Date function
 mov cx,year
 mov dh,month
 mov dl,day
 int 21h ; set the date now

 ;(AL = FFh if the date could not be set)

 exit
main endp

title MS-DOS Function Calls - 2 (DOS2-4.ASM)

;Problem statement:
;Write a program that uses DOS function 2Ah to
;get and display the system date. Use the
;following display format: yyyy-m-d.

INCLUDE Irvine16.inc

.data
month db ?
day db ?
year dw ?

.code
main proc
 mov ax,@data
 mov ds,ax

 mov ah,2Ah ; MS-DOS Get Date function
 int 21h ; get the date now
 mov year,cx
 mov month,dh
 mov day,dl

 mov ax,year
 call Writedec

 mov ah,2 ; display a hyphen
 mov dl,"-"
 int 21h

 mov al,month ; display the month
 mov ah,0
 call Writedec

 mov ah,2 ; display a hyphen
 mov dl,"-"
 int 21h

 mov al,day ; display the day
 mov ah,0
 call Writedec
 call Crlf

 exit
main endp

end main

Answers: Boolean and Comparison Instructions

AND and OR Instructions
1. Method one: Clear all nonessential bits and compare the remaining ones with the mask value:

 and AL,00000111b
 cmp AL,00000111b
 je Target

 Method two: Use the boolean rule that a^b^c == ~(~a v ~b v ~c)

 not AL
 test AL,00000111b
 jz Target

2.
 test AL,00000111b
 jnz Target

3.

 and BL,10001111b

4.

 or CL,00011000b

